YES 0.784 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Monad
  ((zipWithM_ :: Monad a => (b  ->  c  ->  a d ->  [b ->  [c ->  a ()) :: Monad a => (b  ->  c  ->  a d ->  [b ->  [c ->  a ())

module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM_ :: Monad d => (c  ->  a  ->  d b ->  [c ->  [a ->  d ()
zipWithM_ f xs ys sequence_ (zipWith f xs ys)


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\_→q

is transformed to
gtGt0 q _ = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Monad
  ((zipWithM_ :: Monad a => (b  ->  c  ->  a d ->  [b ->  [c ->  a ()) :: Monad a => (b  ->  c  ->  a d ->  [b ->  [c ->  a ())

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM_ :: Monad b => (a  ->  d  ->  b c ->  [a ->  [d ->  b ()
zipWithM_ f xs ys sequence_ (zipWith f xs ys)



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Monad
  ((zipWithM_ :: Monad c => (d  ->  b  ->  c a ->  [d ->  [b ->  c ()) :: Monad c => (d  ->  b  ->  c a ->  [d ->  [b ->  c ())

module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM_ :: Monad a => (c  ->  d  ->  a b ->  [c ->  [d ->  a ()
zipWithM_ f xs ys sequence_ (zipWith f xs ys)


module Maybe where
  import qualified Monad
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule Monad
  (zipWithM_ :: Monad d => (b  ->  c  ->  d a ->  [b ->  [c ->  d ())

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM_ :: Monad d => (a  ->  c  ->  d b ->  [a ->  [c ->  d ()
zipWithM_ f xs ys sequence_ (zipWith f xs ys)



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(ww60, ww61), ww9) → new_psPs(ww61, ww9)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(ww70, ww71), ww6, h) → new_gtGtEs(ww71, ww6, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_foldr(ww3, :(ww40, ww41), :(ww50, ww51), ty_[], h, ba, bb) → new_foldr(ww3, ww41, ww51, ty_[], h, ba, bb)
new_foldr(ww3, :(ww40, ww41), :(ww50, ww51), ty_Maybe, h, ba, bb) → new_foldr(ww3, ww41, ww51, ty_Maybe, h, ba, bb)
new_foldr(ww3, :(ww40, ww41), :(ww50, ww51), ty_IO, h, ba, bb) → new_foldr(ww3, ww41, ww51, ty_IO, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ QDPSizeChangeProof
                        ↳ QDP
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldr(ww3, :(ww40, ww41), :(ww50, ww51), ty_IO, h, ba, bb) → new_foldr(ww3, ww41, ww51, ty_IO, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ QDPSizeChangeProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldr(ww3, :(ww40, ww41), :(ww50, ww51), ty_Maybe, h, ba, bb) → new_foldr(ww3, ww41, ww51, ty_Maybe, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
QDP
                          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldr(ww3, :(ww40, ww41), :(ww50, ww51), ty_[], h, ba, bb) → new_foldr(ww3, ww41, ww51, ty_[], h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: